Add like
Add dislike
Add to saved papers

Inflammation in lung after acute myocardial infarction is induced by dendritic cell-mediated immune response.

The present study was performed to describe the changes of lung tissues in mice with acute myocardial infarction (AMI) and also explain the cell mechanism involved in inflammation in lung. AMI was established by left coronary ligation in mice. Then mice were divided into three groups: control group, MW1 group (sampling after surgery for one week) and MW2 group (sampling after surgery for two weeks). Afterwards, measurement of lung weight and lung histology, cell sorting in bronchoalveolar lavage (BAL) fluid and detection of several adhesive molecules, inflammatory molecules as well as enzyme associated with inflammation were performed. Moreover, dendritic cells (DCs) were isolated from bone marrow of C57B/L6 mice. After incubating with necrotic myocardium, the expression of antigen presenting molecules, co-stimulatory molecules and inflammatory molecules were detected by flow cytometry or immunohistochemistry in DCs. We also detected T-cell proliferation after incubating with necrotic myocardium-treated DCs. AMI induced pathological changes of lung tissue and increased inflammatory cell amount in BAL fluid. AMI also increased the expression of several inflammatory factors, adhesive molecules and enzymes associated with inflammation. CD11c and TLR9, which are DC surface markers, showed a significantly increased expression in mice with AMI. Additionally, necrotic myocardium significantly increased the expression of co-stimulatory factors including CD83 and CD80, inflammatory cytokines including TNF-α, IFN-γ and NF-κB in DCs. Furthermore, DCs treated with necrotic myocardium also significantly promoted T-cell proliferation. AMI induced inflammation in lung and these pathological changes were mediated by DC-associated immune response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app