JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Application of diet theory reveals context-dependent foraging preferences in an herbivorous coral reef fish.

Oecologia 2017 May
Dietary preferences of grazers can drive spatial variability in top-down control of autotroph communities, because diet composition may depend on the relative availability of autotroph species. On Caribbean coral reefs, parrotfish grazing is important in limiting macroalgae, but parrotfish dietary preferences are poorly understood. We applied diet-switching analysis to quantify the foraging preferences of the redband parrotfish (Sparisoma aurofrenatum). At 12 Caribbean reefs, we observed 293 redband parrotfish in 5-min feeding bouts and quantified relative benthic algal cover using quadrats. The primary diet items were macroalgal turfs, Halimeda spp., and foliose macroalgae (primarily Dictyota spp. and Lobophora spp.). When each resource was evaluated independently, there were only weak relationships between resource cover and foraging effort (number of bites taken). Electivity for each resource also showed no pattern, varying from positive (preference for the resource) to negative (avoidance) across sites. However, a diet-switching analysis consisting of pairwise comparisons of relative cover and relative foraging effort revealed clearer patterns: parrotfish (a) preferred Halimeda and macroalgal turfs equally, and those two resources were highly substitutable; (b) preferred Halimeda to foliose macroalgae, but those two resources were complementary; and (c) also preferred turf to foliose macroalgae, and those resources were also complementary. Thus parrotfish grazing rates depend on relative, not absolute, abundance of macroalgal types, due to differences in substitutability among resources. Application of similar analyses may help predict potential changes in foraging effort of benthic grazers over spatial gradients that could inform expectations for reef recovery following the protection of herbivore populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app