Add like
Add dislike
Add to saved papers

In Vitro Studies on the Degradability, Bioactivity, and Cell Differentiation of PRP/AZ31B Mg Alloys Composite Scaffold.

In recent years, more and more methods have been developed to improve the bioactivity of the biodegradable materials in bone tissue regeneration. In present study, we used rat mesenchymal stem cells (rMSCs) to evaluate the outcomes of Mg alloys (AZ31B, Magnesium, and Aluminum) and Platelet-rich plasma (PRP)/Mg alloys on rMSCs biocompatibility and osteogenic differentiation. Water absorption experiments indicated that both bare AZ31B and PRP/AZ31B were capable of absorbing large amounts of water. But the water absorption ratio for PRP/AZ31B was significantly higher than that for bare AZ31B. The degradability experiments implied that both samples degraded at same speed. rMSCs on the surface of AZ31B distributed more and better than those on the AZ31B scaffold. In ALP activity experiment, the activity of rMSCs on the PRP/AZ31B was markedly higher than that on the AZ31B scaffolds on the 7th day and 14th day. qRT-PCR also showed that OPN and OCN were expressed in both samples. OPN and OCN expression in PRP/AZ31B sample were higher than those in bare AZ31B samples. In summary, the in vitro study implied that AZ31B combined with PRP could remarkably improve cell seeding, attachment, proliferation, and differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app