Add like
Add dislike
Add to saved papers

Development of [ 18 F]Maleimide-Based Glycogen Synthase Kinase-3β Ligands for Positron Emission Tomography Imaging.

Dysregulation of glycogen synthase kinase-3β (GSK-3β) is implicated in the pathogenesis of neurodegenerative and psychiatric disorders. Thus, development of GSK-3β radiotracers for positron emission tomography (PET) imaging is of paramount importance, because such a noninvasive imaging technique would allow better understanding of the link between the activity of GSK-3β and central nervous system disorders in living organisms, and it would enable early detection of the enzyme's aberrant activity. Herein, we report the synthesis and biological evaluation of a series of fluorine-substituted maleimide derivatives that are high-affinity GSK-3β inhibitors. Radiosynthesis of a potential GSK-3β tracer [18 F] 10a is achieved. Preliminary in vivo PET imaging studies in rodents show moderate brain uptake, although no saturable binding was observed in the brain. Further refinement of the lead scaffold to develop potent [18 F]-labeled GSK-3 radiotracers for PET imaging of the central nervous system is warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app