Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Using chiral tactoids as optical probes to study the aggregation behavior of chromonics.

Tactoids are nuclei of an orientationally ordered nematic phase that emerge upon cooling the isotropic phase. In addition to providing a natural setting for exploring chromonics under confinement, we show that tactoids can also serve as optical probes to delineate the role of temperature and concentration in the aggregation behavior of chromonics. For high concentrations, we observe the commonly reported elongated bipolar tactoids. As the concentration is lowered, breaking of achiral symmetry in the director configuration is observed with a predominance of twisted bipolar tactoids. On further reduction of concentration, a remarkable transformation of the director configuration occurs, wherein it conforms to a unique splay-minimizing configuration. Based on a simple model, we arrive at an interesting result that lower concentrations have longer aggregates at the same reduced temperature. Hence, the splay deformation that scales linearly with the aggregate length becomes prohibitive for lower concentrations and is relieved via twist and bend deformations in this unique configuration. Raman scattering measurements of the order parameters independently verify the trend in aggregate lengths and provide a physical picture of the nematic-biphasic transition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app