JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel role of the Dna2 translocase function in DNA break resection.

Genes & Development 2017 March 2
DNA double-strand break repair by homologous recombination entails nucleolytic resection of the 5' strand at break ends. Dna2, a flap endonuclease with 5'-3' helicase activity, is involved in the resection process. The Dna2 helicase activity has been implicated in Okazaki fragment processing during DNA replication but is thought to be dispensable for DNA end resection. Unexpectedly, we found a requirement for the helicase function of Dna2 in end resection in budding yeast cells lacking exonuclease 1. Biochemical analysis reveals that ATP hydrolysis-fueled translocation of Dna2 on ssDNA facilitates 5' flap cleavage near a single-strand-double strand junction while attenuating 3' flap incision. Accordingly, the ATP hydrolysis-defective dna2-K1080E mutant is less able to generate long products in a reconstituted resection system. Our study thus reveals a previously unrecognized role of the Dna2 translocase activity in DNA break end resection and in the imposition of the 5' strand specificity of end resection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app