JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Associations of water balance and thermal sensitivity of toads with macroclimatic characteristics of geographical distribution.

Interspecific variation in patterns of geographical distribution of phylogenetically related species of amphibians might be related to physiological adaptation to different climatic conditions. In this way, a comparative study of resistance to evaporative water loss, rehydration rates and sensitivity of locomotor performance to variations on hydration level and temperature was performed for five species of Bufonidae toads (Rhinella granulosa, R. jimi, R. ornata, R. schneideri and R. icterica) inhabiting different Brazilian biomes. The hypotheses tested were that, when compared to species inhabiting mesic environments, species living at hot and dry areas would show: (1) greater resistance to evaporative water loss, (2) higher rates of water uptake, (3) lower sensitivity of locomotor performance to dehydration and (4) lower sensitivity of locomotor performance at higher temperatures and higher sensitivity of locomotor performance at lower temperatures. This comparative analysis showed relations between body mass and interspecific variation in rehydration rates and resistance to evaporative water loss in opposite directions. These results might represent a functional compensation associated with relatively lower absorption areas in larger toads and higher evaporative areas in smaller ones. Moreover, species from the semi-arid Caatinga showed locomotor performance less sensitive to dehydration but highly affected by lower temperatures, as well greater resistance to evaporative water loss, when compared to the other species from the mesic Atlantic Forest and the savannah-like area called Cerrado. These results suggest adaptation patterns to environmental conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app