Add like
Add dislike
Add to saved papers

Reproductive toxicity provoked by titanium dioxide nanoparticles and the ameliorative role of Tiron in adult male rats.

Titanium dioxide nanoparticles (TDN) are widely used in paints, plastics, ceramics, cosmetics, printing ink, rubber and paper. Tiron is a water soluble metal chelator and antioxidant. This study was designed to investigate the reproductive toxicity of TDN in male albino rats and the ameliorative role of Tiron to minimize such toxic effects. Eighty adult male albino rats were assigned into 4 equal groups, group 1: control; group 2: received TDN at 100 mg/kg/day orally for 8 weeks; group 3: received Tiron at 470 mg/kg/day intraperitoneally for 2 weeks (the last 2 weeks of the experimental period); group 4: received both TDN and Tiron by the same previously mentioned dose, route and duration. The results revealed that TDN provoked reproductive toxicity which was proved by the deteriorated spermogram picture, high incidence of micronucleated RBCs, elevated oxidative stress parameters and up regulation of Testin gene. Whereas, Tiron co-treatment ameliorated most of these toxic alterations. Our findings highlighted the protective role of tiron against TDN intoxication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app