Add like
Add dislike
Add to saved papers

Preliminary research on DNA methylation changes during murine palatogenesis induced by TCDD.

2,3,7,8-Tetrachlrodibenzo-p-dioxin (TCDD) has been shown to induce cleft palate through growth factor and receptor expression changes during palatogenesis. DNA methylation is an important epigenetic modification that can regulate gene expressions and may be involved in TCDD-induced cleft palate. In this study, we investigated the effects of TCDD on the global and CpG DNA methylation status and the expression levels of DNA methyltransferases (Dnmts) in palate tissue of fetal mice. Pregnant C57BL/6J mice were administered with corn oil or TCDD 28 μg/kg at gestation day 10.5(GD10.5), and sacrificed at GD13.5, 14.5, 15.5. Fetal palates were collected for molecular analysis. Global DNA methylation status was detected by Methylamp™ Global DNA Methylation Quantification Ultra Kit. The expression of DNA methyltransferases were examined by quantitative real-time PCR(q-PCR). Methylation Specific PCR (MSP) was performed to analyze CpG methylation status of Dnmts. We found that the global DNA methylation level and the expression of Dnmt3a were higher at GD13.5 in the TCDD group. The methylation level of CpG site 2 in the promoter region of Dnmt3a in the control group was higher than that of the TCDD group at GD13.5. The low CpG methylation level of Dnmt3a at GD13.5 which causes the up-expression of Dnmt3a may induce global hypermethylation in fetal palate tissue. The aberrant global methylation status at GD13.5 may be the cause of palate malformation in fetal mice induced by TCDD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app