Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Non-linear van't Hoff behavior in pulmonary surfactant model membranes.

Pulmonary surfactant exhibits phase coexistence over a wide range of surface pressure and temperature. Less is known about the effect of temperature on pulmonary surfactant models. Given the lack of studies on this issue, we used electron paramagnetic resonance (EPR) and nonlinear least-squares (NLLS) simulations to investigate the thermotropic phase behavior of the matrix that mimics the pulmonary surfactant lipid complex, i.e., the lipid mixture composed of dipalmitoyl phosphatidylcholine (DPPC), palmitoyl-oleoyl phosphatidylcholine (POPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG). Irrespective of pH, the EPR spectra recorded from 5°C to 25°C in the DPPC/POPC/POPG (4:3:1) model membrane contain two spectral components corresponding to lipids in gel-like and fluid-like phases, indicating a coexistence of two domains in that range. The temperature dependence of the distribution of spin labels between the domains yielded nonlinear van't Hoff plots. The thermodynamic parameters evaluated were markedly different for DPPC and for the ternary DPPC/POPC/POPG (4:3:1) membranes and exhibited a dependence on chemical environment. While enthalpy and entropy changes for DPPC were always positive and presented a quadratic behavior with temperature, those of the ternary mixture were linearly dependent on temperature and changed from negative to positive values. Despite that, enthalpy-entropy compensation takes place in the two systems. The thermotropic process associated with the coexistence of the two domains is entropically-driven in DPPC and either entropically- or enthalpically-driven in the pulmonary surfactant membrane depending on the pH, ionic strength and temperature. The significance of these results to the structure and function of the pulmonary surfactant lipid matrix is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app