JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

TGFβ1 induces endometrial cancer cell adhesion and migration by up-regulating integrin αvβ3 via SMAD-independent MEK-ERK1/2 signaling.

Endometrial cancer is the most common, and second most lethal, gynecological malignancy, and its rates of incidence and death are growing. This is likely attributable to increased numbers of high-risk type II endometrial cancers which account for ~30% of cases but ~75% of deaths due to their aggressive and metastatic behaviour. Histopathological and in vitro functional studies suggest that aberrant TGFβ1 signaling may contribute to endometrial cancer development and the acquisition of invasive/metastatic characteristics. However, little is known about the cellular and molecular mechanisms of TGFβ1 in high-risk endometrial cancers. In the present study, we examined the roles and mechanisms of TGFβ1 on cell adhesion and motility in type II endometrial cancer cell lines, KLE and HEC-1B. We show that treatment with TGFβ1 increases cell adhesion to vitronectin and transwell cell migration. We also demonstrate that TGFβ1 treatment increases integrin β3 and αv mRNA and protein levels via SMAD-independent MEK-ERK1/2 signaling. Importantly, siRNA depletion or antibody-mediated blocking of integrin αvβ3 reversed the effects of TGFβ1 on cell adhesion and migration. Our results suggest that TGFβ1-MEK-ERK1/2-integrin αvβ3 signaling could contribute to the invasive behaviour of high-risk endometrial cancer by promoting cell adhesion and migration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app