JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Human MFAP1 is a cryptic ortholog of the Saccharomyces cerevisiae Spp381 splicing factor.

BACKGROUND: Pre-mRNA splicing involves the stepwise assembly of a pre-catalytic spliceosome, followed by its catalytic activation, splicing catalysis and disassembly. Formation of the pre-catalytic spliceosomal B complex involves the incorporation of the U4/U6.U5 tri-snRNP and of a group of non-snRNP B-specific proteins. While in Saccharomyces cerevisiae the Prp38 and Snu23 proteins are recruited as components of the tri-snRNP, metazoan orthologs of Prp38 and Snu23 associate independently of the tri-snRNP as members of the B-specific proteins. The human spliceosome contains about 80 proteins that lack obvious orthologs in yeast, including most of the B-specific proteins apart from Prp38 and Snu23. Conversely, the tri-snRNP protein Spp381 is one of only five S. cerevisiae splicing factors without a known human ortholog.

RESULTS: Using InParanoid, a state-of-the-art method for ortholog inference between pairs of species, and systematic BLAST searches we identified the human B-specific protein MFAP1 as a putative ortholog of the S. cerevisiae tri-snRNP protein Spp381. Bioinformatics revealed that MFAP1 and Spp381 share characteristic structural features, including intrinsic disorder, an elongated shape, solvent exposure of most residues and a trend to adopt α-helical structures. In vitro binding studies showed that human MFAP1 and yeast Spp381 bind their respective Prp38 proteins via equivalent interfaces and that they cross-interact with the Prp38 proteins of the respective other species. Furthermore, MFAP1 and Spp381 both form higher-order complexes that additionally include Snu23, suggesting that they are parts of equivalent spliceosomal sub-complexes. Finally, similar to yeast Spp381, human MFAP1 partially rescued a growth defect of the temperature-sensitive mutant yeast strain prp38-1.

CONCLUSIONS: Human B-specific protein MFAP1 structurally and functionally resembles the yeast tri-snRNP-specific protein Spp381 and thus qualifies as its so far missing ortholog. Our study indicates that the yeast Snu23-Prp38-Spp381 triple complex was evolutionarily reprogrammed from a tri-snRNP-specific module in yeast to the B-specific Snu23-Prp38-MFAP1 module in metazoa, affording higher flexibility in spliceosome assembly and thus, presumably, in splicing regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app