Add like
Add dislike
Add to saved papers

Preparation of Biodegradable and Elastic Poly(ε-caprolactone-co-lactide) Copolymers and Evaluation as a Localized and Sustained Drug Delivery Carrier.

To develop a biodegradable polymer possessing elasticity and flexibility, we synthesized MPEG-b-(PCL-co-PLA) copolymers (PCxLyA), which display specific rates of flexibility and elasticity. We synthesize the PCxLyA copolymers by ring-opening polymerization of ε-caprolactone and l-lactide. PCxLyA copolymers of various compositions were synthesized with 500,000 molecular weight. The PCxLyA copolymers mechanical properties were dependent on the mole ratio of the ε-caprolactone and l-lactide components. Cyclic tensile tests were carried out to investigate the resistance to creep of PCxLyA specimens after up to 20 deformation cycles to 50% elongation. After in vivo implantation, the PCxLyA implants exhibited biocompatibility, and gradually biodegraded over an eight-week experimental period. Immunohistochemical characterization showed that the PCxLyA implants provoked in vivo inflammation, which gradually decreased over time. The copolymer was used as a drug carrier for locally implantable drugs, the hydrophobic drug dexamethasone (Dex), and the water-soluble drug dexamethasone 21-phosphate disodium salt (Dex(p)). We monitored drug-loaded PCxLyA films for in vitro and in vivo drug release over 40 days and observed real-time sustained release of near-infrared (NIR) fluorescence over an extended period from hydrophobic IR-780- and hydrophilic IR-783-loaded PCxLyA implanted in live animals. Finally, we confirmed that PCxLyA films are usable as biodegradable, elastic drug carriers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app