Add like
Add dislike
Add to saved papers

Effects of G-Quadruplex Topology on Electronic Transfer Integrals.

Nanomaterials 2016 October 16
G-quadruplex is a quadruple helical form of nucleic acids that can appear in guanine-rich parts of the genome. The basic unit is the G-tetrad, a planar assembly of four guanines connected by eight hydrogen bonds. Its rich topology and its possible relevance as a drug target for a number of diseases have stimulated several structural studies. The superior stiffness and electronic π-π overlap between consecutive G-tetrads suggest exploitation for nanotechnologies. Here we inspect the intimate link between the structure and the electronic properties, with focus on charge transfer parameters. We show that the electronic couplings between stacked G-tetrads strongly depend on the three-dimensional atomic structure. Furthermore, we reveal a remarkable correlation with the topology: a topology characterized by the absence of syn-anti G-G sequences can better support electronic charge transfer. On the other hand, there is no obvious correlation of the electronic coupling with usual descriptors of the helix shape. We establish a procedure to maximize the correlation with a global helix shape descriptor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app