Add like
Add dislike
Add to saved papers

A Study of Inverted-Type Perovskite Solar Cells with Various Composition Ratios of (FAPbI₃)1-x(MAPbBr₃)x.

Nanomaterials 2016 October 14
This work presents mixed (FAPbI₃)1-x(MAPbBr₃)x perovskite films with various composition ratios, x (x = 0-1), which are formed using the spin coating method. The structural, optical, and electronic behaviors of the mixed (FAPbI₃)1-x(MAPbBr₃)x perovskite films are discussed. A device with structure glass/indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/mixed perovskite/C60/BCP/Ag was fabricated. The mixed perovskite film was an active light-harvesting layer.

PEDOT: PSS was a hole transporting layer between the ITO and perovskite. Both C60 and bathocuproine (BCP) were electron transporting layers. MAPbBr₃ was added to FAPbI₃ with a composition ratio of x = 0.2, stabilizing the perovskite phase, which exhibited a uniform and dense morphology. The optimal device exhibited band matching with C60, resulting in a low series resistance (Rsh) and a high fill factor (FF). Therefore, the device with composition (FAPbI₃)1-x(MAPbBr₃)x and x = 0.2 exhibited outstanding performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app