Add like
Add dislike
Add to saved papers

Graphene-Enabled Electrodes for Electrocardiogram Monitoring.

Nanomaterials 2016 August 24
The unique parameters of graphene (GN)-notably its considerable electron mobility, high surface area, and electrical conductivity-are bringing extensive attention into the wearable technologies. This work presents a novel graphene-based electrode for acquisition of electrocardiogram (ECG). The proposed electrode was fabricated by coating GN on top of a metallic layer of a Ag/AgCl electrode using a chemical vapour deposition (CVD) technique. To investigate the performance of the fabricated GN-based electrode, two types of electrodes were fabricated with different sizes to conduct the signal qualities and the skin-electrode contact impedance measurements. Performances of the GN-enabled electrodes were compared to the conventional Ag/AgCl electrodes in terms of ECG signal quality, skin-electrode contact impedance, signal-to-noise ratio (SNR), and response time. Experimental results showed the proposed GN-based electrodes produced better ECG signals, higher SNR (improved by 8%), and lower contact impedance (improved by 78%) values than conventional ECG electrodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app