Add like
Add dislike
Add to saved papers

Transformable Nanomaterials as an Artificial Extracellular Matrix for Inhibiting Tumor Invasion and Metastasis.

ACS Nano 2017 April 26
Tumor metastasis is one of the big challenges in cancer treatment and is often associated with high patient mortality. Until now, there is an agreement that tumor invasion and metastasis are related to degradation of extracellular matrix (ECM) by enzymes. Inspired by the formation of natural ECM and the in situ self-assembly strategy developed in our group, herein, we in situ constructed an artificial extracellular matrix (AECM) based on transformable Laminin (LN)-mimic peptide 1 (BP-KLVFFK-GGDGR-YIGSR) for inhibition of tumor invasion and metastasis. The peptide 1 was composed of three modules including (i) the hydrophobic bis-pyrene (BP) unit for forming and tracing nanoparticles; (ii) the KLVFF peptide motif that was inclined to form and stabilize fibrous structures through intermolecular hydrogen bonds; and (iii) the Y-type RGD-YIGSR motif, derived from LN conserved sequence, served as ligands to bind cancer cell surfaces. The peptide 1 formed nanoparticles (1-NPs) by the rapid precipitation method, owing to strong hydrophobic interactions of BP. Upon intravenous injection, 1-NPs effectively accumulated in the tumor site due to the enhanced permeability and retention (EPR) effect and/or targeting capability of RGD-YIGSR. The accumulated 1-NPs simultaneously transformed into nanofibers (1-NFs) around the solid tumor and further entwined to form AECM upon binding to receptors on the tumor cell surfaces. The AECM stably existed in the primary tumor site over 72 h, which consequently resulted in efficiently inhibiting the lung metastasis in breast and melanoma tumor models. The inhibition rates in two tumor models were 82.3% and 50.0%, respectively. This in vivo self-assembly strategy could be widely utilized to design effective drug-free biomaterials for inhibiting the tumor invasion and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app