Add like
Add dislike
Add to saved papers

Amine Transaminase Engineering for Spatially Bulky Substrate Acceptance.

Amine transaminase (ATA) catalyzing stereoselective amination of prochiral ketones is an attractive alternative to transition metal catalysis. As wild-type ATAs do not accept sterically hindered ketones, efforts to widen the substrate scope to more challenging targets are of general interest. We recently designed ATAs to accept aromatic and thus planar bulky amines, with a sequence-based motif that supports the identification of novel enzymes. However, these variants were not active against 2,2-dimethyl-1-phenyl-propan-1-one, which carries a bulky tert-butyl substituent adjacent to the carbonyl function. Here, we report a solution for this type of substrate. The evolved ATAs perform asymmetric synthesis of the respective R amine with high conversions by using either alanine or isopropylamine as amine donor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app