Add like
Add dislike
Add to saved papers

Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus.

Cerebral Cortex 2018 April 2
The dorsal Lateral Geniculate Nucleus (dLGN) is the primary image-forming target of the retina and shares a reciprocal connection with primary visual cortex (V1). Previous studies showed that corticothalamic input is essential for the development of thalamocortical projections, but less is known about the potential role of this reciprocal connection in the development of retinal projections. Here, we show a deficit of retinal innervation in the dLGN around E18.5 in Tra2β conditional knockout (cKO) "cortexless" mice, an age when apoptosis occurs along the thalamocortical tract and in some dLGN neurons. In vivo electrophysiology experiments in the dLGN further confirmed the loss of functional retinal input. Experiments with N-methyl-d-aspartic acid-induced V1 lesion as well as Fezf2 cKO mice confirmed that the disruption of connections between the dLGN and V1 lead to abnormal retinal projections to the dLGN. Interestingly, retinal projections to the ventral Lateral Geniculate Nucleus (vLGN) and Superior Colliculus (SC) were normal in all 3 mice models. Finally, we show that the cortexless mice had worse performance than control mice in a go-no go task with visual cues. Our results provide evidence that the wiring of visual circuit from the retina to the dLGN and V1 thereafter is coordinated at a surprisingly early stage of circuit development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app