JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Covalent Modification of Glassy Carbon Surfaces by Electrochemical Grafting of Aryl Iodides.

The reduction of an aryl iodide is generally believed to involve a clean-cut two-electron reduction to produce an aryl anion and iodide. This is in contradiction to what is observed if a highly efficient grafting agent, such as an aryldiazonium salt, is employed. The difference in behavior is explained by the much more extreme potentials required for reducing an aryl iodide, which facilitates the further reduction of the aryl radical formed as an intermediate. However, in this study we disclose that electrografting of aryl iodides is indeed possible upon extended voltammetric cycling. This implies that even if the number of aryl radicals left unreduced at the electrode surface is exceedingly small, a functionalization of the surface may still be promoted. In fact, the grafting efficiency is found to increase during the grafting process, which may be explained by the inhibiting effect the growing film exerts on the competing reduction of the aryl radical. The slow buildup of the organic film results in a well-ordered structure as shown by the well-defined electrochemical response from a grafted film containing ferrocenylmethyl groups. Hence, the reduction of aryl iodides allows a precisely controlled, albeit slow, growth of thin organic films.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app