Add like
Add dislike
Add to saved papers

Two-Dimensional Offline Chromatographic Fractionation for the Characterization of Humic-Like Substances in Atmospheric Aerosol Particles.

Organic carbon in atmospheric particles comprises a large fraction of chromatographically unresolved compounds, often referred to as humic-like substances (HULIS), which influence particle properties and impact climate, human health, and ecosystems. To better understand its composition, a two-dimensional (2D) offline method combining size-exclusion (SEC) and reversed-phase liquid chromatography (RP-HPLC) using a new spiked gradient profile is presented. It separates HULIS into 55 fractions of different size and polarity, with estimated ranges of molecular weight and octanol/water partitioning coefficient (log P) from 160-900 g/mol and 0.2-3.3, respectively. The distribution of HULIS within the 2D size versus polarity space is illustrated with heat maps of ultraviolet absorption at 254 nm. It is found to strongly differ in a small example set of samples from a background site near Leipzig, Germany. In winter, the most intense signals were obtained for the largest molecules (>520 g/mol) with low polarity (log P ∼ 1.9), whereas in summer, smaller (225-330 g/mol) and more polar (log P ∼ 0.55) molecules dominate. The method reveals such differences in HULIS composition in a more detailed manner than previously possible and can therefore help to better elucidate the sources of HULIS in different seasons or at different sites. Analyzing Suwannee river fulvic acid as a common HULIS surrogate shows a similar polarity range, but the sizes are clearly larger than those of atmospheric HULIS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app