Add like
Add dislike
Add to saved papers

Aerosol Formation from OH Oxidation of the Volatile Cyclic Methyl Siloxane (cVMS) Decamethylcyclopentasiloxane.

Aerosol formation from OH oxidation of decamethylcyclopentasiloxane (D5 , C10 H30 O5 Si5 ), a cyclic volatile methyl siloxane (cVMS) found in consumer products, was studied in a flow-through photo-oxidation chamber with and without the presence of ammonium sulfate seed aerosol. For the unseeded experiments, chemical characterization with high-performance mass spectrometry showed that the molecular composition changed substantially with aerosol mass loading in the 1-12 μg/m3 range. Monomers (5 Si atoms/molecule) and dimers (10 Si atoms/molecule) dominated the mass spectra of aerosols at higher mass loadings, while ring-opened species (neither 5 nor 10 Si atoms/molecule) dominated the mass spectra of aerosols at lower mass loadings. Molecular signal intensity dependencies upon the aerosol volume/surface area ratio suggest that non-volatile ring-opened species are formed in the gas phase and assist particle formation through condensation, while dimers are formed by accretion reactions within the particle phase as the particles grow. These conclusions are supported by experiments in the presence of seed aerosol with a similar siloxane aerosol mass loading but higher volume/surface area ratio, where ring-opened species are much less prevalent than monomers or dimers and the aerosol yield is higher. Because of the importance of accretion chemistry, the aerosol yield from D5 oxidation is likely to be strongly dependent upon the particle size and morphology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app