Add like
Add dislike
Add to saved papers

Photoaffinity Ligand for the Inhalational Anesthetic Sevoflurane Allows Mechanistic Insight into Potassium Channel Modulation.

Sevoflurane is a commonly used inhaled general anesthetic. Despite this, its mechanism of action remains largely elusive. Compared to other anesthetics, sevoflurane exhibits distinct functional activity. In particular, sevoflurane is a positive modulator of voltage-gated Shaker-related potassium channels (Kv 1.x), which are key regulators of action potentials. Here, we report the synthesis and validation of azisevoflurane, a photoaffinity ligand for the direct identification of sevoflurane binding sites in the Kv 1.2 channel. Azisevoflurane retains major sevoflurane protein binding interactions and pharmacological properties within in vivo models. Photoactivation of azisevoflurane induces adduction to amino acid residues that accurately reported sevoflurane protein binding sites in model proteins. Pharmacologically relevant concentrations of azisevoflurane analogously potentiated wild-type Kv 1.2 and the established mutant Kv 1.2 G329T. In wild-type Kv 1.2 channels, azisevoflurane photolabeled Leu317 within the internal S4-S5 linker, a vital helix that couples the voltage sensor to the pore region. A residue lining the same binding cavity was photolabeled by azisevoflurane and protected by sevoflurane in the Kv 1.2 G329T. Mutagenesis of Leu317 in WT Kv 1.2 abolished sevoflurane voltage-dependent positive modulation. Azisevoflurane additionally photolabeled a second distinct site at Thr384 near the external selectivity filter in the Kv 1.2 G329T mutant. The identified sevoflurane binding sites are located in critical regions involved in gating of Kv channels and related ion channels. Azisevoflurane has thus emerged as a new tool to discover inhaled anesthetic targets and binding sites and investigate contributions of these targets to general anesthesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app