Add like
Add dislike
Add to saved papers

Synthesis of Novel Saccharin Derivatives.

The synthesis of saccharin (1,2-benzisothiazol-3-one-1,1-dioxide) derivatives substituted on the benzene ring has seen limited development despite the longevity of this compound's use as an artificial sweetener. This type of saccharin derivative would however present attractive properties for the development of new bioactive, drug-like small molecule compounds. Here we report the derivatisation of the benzene ring of saccharin using Cu(I)-catalyzed azide alkyne cycloaddition (CuAAC) to synthesise a diverse library of novel saccharin-1,2,3-triazole conjugates. All library compounds retain the capability for interactions with biomolecules via the unmodified sulfonamide and lactam groups of the parent saccharin core heterocycle. The compounds also encompass alternate orientations of the 1,2,3-triazole heterocycle, thus further adding diversity to the potential hydrogen bonding interactions of these compounds with biomolecules of therapeutic interest. Our findings demonstrate that specifically functionalized derivatives of saccharin may be prepared from either saccharin azide or saccharin alkyne building blocks in high yield using CuAAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app