Add like
Add dislike
Add to saved papers

Small Molecule-Polymer Composite Hole-Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells.

Effective and stable hole-transporting materials (HTMs) are necessary for obtaining excellent planar perovskite solar cells (PSCs). Herein, we reported a solution-processed composite HTM consisting of a polymer poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and a small-molecule copper phthalocyanine-3,4',4″,4‴-tetrasulfonated acid tetrasodium salt (TS-CuPc) with optimized doping ratios. The composite HTM is crucial for not only enhancing the hole transport and extraction but also improving the perovskite crystallization. In addition, the composite HTM can weaken the indium tin oxide erosion by reducing the acidity and increasing the dispersibility of the PEDOT:PSS aqueous dispersion via incorporating suitable TS-CuPc. Consequently, a highly efficient device was fabricated with a power conversion efficiency (PCE) of 17.29%. Its short-circuit current (JSC ) is 22.23 mA/cm2 , and its open-circuit voltage (VOC ) is 1.01 V. Meanwhile, it exhibited a higher fill factor (FF) of 77% and improved cell stability. The developed composite HTM provides a good potential anode interfacial layer for fabricating outstanding PSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app