Add like
Add dislike
Add to saved papers

Quantitative ultrasound and DXA measurements in aromatase inhibitor-treated breast cancer women receiving denosumab.

PURPOSE: Denosumab has been proven to reduce fracture risk in breast cancer (BC) women under aromatase inhibitors (AIs). Quantitative ultrasound (QUS) provides information on the structure and elastic properties of bone. Our aim was to assess bone health by phalangeal QUS and by dual-energy X-ray absorptiometry (DXA), and to evaluate bone turnover in AIs-treated BC women receiving denosumab.

METHODS: 35 Postmenopausal BC women on AIs were recruited (mean age 61.2 ± 4.5 years) and treated with denosumab 60 mg administered subcutaneously every 6 months. Phalangeal QUS parameters [Amplitude Dependent Speed of Sound (AD-SoS), Ultrasound Bone Profile Index (UBPI), Bone Transmission Time (BTT)] and DXA at lumbar spine and femoral neck were performed. Serum C-telopeptide of type 1 collagen (CTX) and bone-specific alkaline phosphatase (BSAP) were also measured. The main outcomes were compared with a control group not receiving denosumab (n = 39).

RESULTS: In patients treated with denosumab, differently from controls, QUS and DXA measurements improved after 24 months, and a reduction of CTX and BSAP was detected at 12 and 24 months in comparison to baseline (P < 0.05). The percent changes (Δ) of QUS measurements were significantly associated with ΔBMD at femoral neck, and ΔCTX and ΔBSAP were associated with ΔBMD at lumbar spine (r = -0.39, P = 0.02; r = -0.49, P = 0.01, respectively).

CONCLUSIONS: Denosumab preserves bone health as assessed by phalangeal QUS and DXA. Since inexpensive and radiation-free, phalangeal QUS may be considered in the follow-up of AIs-treated BC women receiving denosumab.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app