Add like
Add dislike
Add to saved papers

EFFECT OF VISIBLE RANGE ELECTROMAGNETIC RADIATIONS ON ESCHERICHIA COLI.

BACKGROUND: Escherichia coli is the agent responsible for a range of clinical diseases. With emerging antimicrobial resistance, other treatment options including solar/photo-therapy are becoming increasingly common. Visible Range Radiation Therapy/Colour Therapy is an emerging technique in the field of energy/vibrational medicine that uses visible spectrum of Electromagnetic Radiations to cure different diseases. In this study, our goal was to understand the effect of Visible Range Electromagnetic Radiations on E. coli (in vitro) and therefore find out the most appropriate visible range radiation for the treatment of diseases caused by E. coli.

MATERIALS AND METHODS: A total of 6 non-repetitive E. coli isolates were obtained from urine samples obtained from hospitalized patients with UTI. Single colony of E. coli was inoculated in 3 ml of Lysogeny Broth (LB) and 40 μl of this E. coli suspension was poured into each of the plastic tubes which were then irradiated with six different wavelengths in the visible region (Table. 1) after 18 hours with one acting as a control. The Optical Densities of these irradiated samples were then measured. Furthermore, scanning electron microscopy (TEFCAN ZEGA3) was carried out.

RESULTS: The analysis of the microscopic and SEM images of irradiated E. coli samples with six different visible range radiations is representative of The fact that E. coli responded differently to every applied radiation in the visible region and the most profound inhibitory effects were that of 538nm Visible Range Radiation (Green) which proved to be bactericidal and 590nm Visible Range Radiation (yellow) which was bacteriostatic. The enhanced growth of E. coli with varying degrees was clearly observed in 610nm (orange), 644nm (red), 464nm (Purple) and 453nm (blue).

CONCLUSION: It can be concluded that 538nm (Green) and 590nm (Yellow) can effectively be used for treating E. coli borne diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app