Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Schiff bases of putrescine with methylglyoxal protect from cellular damage caused by accumulation of methylglyoxal and reactive oxygen species in Dictyostelium discoideum.

Polyamines protect protein glycation in cells against the advanced glycation end product precursor methylglyoxal, which is inevitably produced during glycolysis, and the enzymes that detoxify this α-ketoaldehyde have been widely studied. Nonetheless, nonenzymatic methylglyoxal-scavenging molecules have not been sufficiently studied either in vitro or in vivo. Here, we hypothesized reciprocal regulation between polyamines and methylglyoxal modeled in Dictyostelium grown in a high-glucose medium. We based our hypothesis on the reaction between putrescine and methylglyoxal in putrescine-deficient (odc- ) or putrescine-overexpressing (odcoe ) cells. In these strains, growth and cell cycle were found to be dependent on cellular methylglyoxal and putrescine contents. The odc- cells showed growth defects and underwent G1 phase cell cycle arrest, which was efficiently reversed by exogenous putrescine. Cellular methylglyoxal, reactive oxygen species (ROS), and glutathione levels were remarkably changed in odcoe cells and odc̄ cells. These results revealed that putrescine may act as an intracellular scavenger of methylglyoxal and ROS. Herein, we observed interactions of putrescine and methylglyoxal via formation of a Schiff base complex, by UV-vis spectroscopy, and confirmed this adduct by liquid chromatography with mass spectrometry via electrospray ionization. Schiff bases were isolated, analyzed, and predicted to have molecular masses ranging from 124 to 130. We showed that cellular putrescine-methylglyoxal Schiff bases were downregulated in proportion to the levels of endogenous or exogenous putrescine and glutathione in the odc mutants. The putrescine-methylglyoxal Schiff base affected endogenous metabolite levels. This is the first report showing that cellular methylglyoxal functions as a signaling molecule through reciprocal interactions with polyamines by forming Schiff bases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app