Add like
Add dislike
Add to saved papers

Design of fixed dose combination and physicochemical characterization of enteric-coated bilayer tablet with circadian rhythmic variations containing telmisartan and pravastatin sodium.

The aim of this study was to investigate a fixed dose combination (FDC) of telmisartan (TEL) and pravastatin sodium (PRA) in enteric-coated bilayer tablets, which was designed for once-daily bedtime dose in order to match circadian rhythmic variations of hypertension and cholesterol synthesis and optimize the patient friendly dosing treatment. Due to the poor aqueous solubility of TEL, ternary solid dispersions (SD) consisting of TEL, polyethylene glycol 6000 (PEG 6000) and magnesium oxide (MgO) were designed to enhance its dissolution rate in intestinal fluid. MgO was added as an effective alkalizer to maintain the high microenvironmental pH of the saturated solution in the immediate vicinity of TEL particles because TEL is known to be ionizable but poorly soluble in intestinal fluid. In contrast, PRA is known to be very unstable in low pH conditions. In the SD system, TEL was present in an amorphous structure and formed an intermolecular hydrogen bonding with MgO, giving complete drug release without precipitation in intestinal fluid. In addition, the amount of hydrophilic carrier (PEG 6000) was also a factor. In the design of tablet formulation, the diluents and superdisintegrants could play a key role in release profiles. Then, to fulfill the unmet needs of the two model drugs and match circadian rhythmic variations of hypertension and cholesterol synthesis, enteric-coated bilayer tablet consisting of TEL SD and PRA was finally prepared using Acryl-EZE(®) as an enteric coating material. Prior to enteric coating, a seal coating layer (Opadry(®), 2% weight gains) was firstly introduced to separate the core bilayer tablet from the acidic enteric coating polymers to avoid premature degradation. Dissolution profiles of finished tablets revealed that enteric-coated bilayer tablets with 6% weight gains remained intact in acidic media (pH 1.0) for 2h and then released drugs completely within 45min after switching to the intestinal media (pH 6.8). It was observed that enteric-coated bilayer tablets were stable during 3 month under the accelerated condition of 40°C/75% RH. The delayed drug release and bedtime dosage regimen using enteric-coated bilayer tablet containing TEL and PRA, matching the circadian rhythms of hypertension and hyperlipidemia can provide therapeutic benefits for elderly patients in terms of maximizing the therapeutic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app