JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MAD2L2 Promotes Open Chromatin in Embryonic Stem Cells and Derepresses the Dppa3 Locus.

Stem Cell Reports 2017 April 12
The chromatin of naive embryonic stem cells (ESCs) has a largely open configuration, as evident by the lack of condensed heterochromatin and the hypomethylation of DNA. Several molecular mechanisms promoting this constellation were previously identified. Here we present evidence for an important epigenetic function of MAD2L2, a protein originally known for its role in DNA damage repair, and for its requirement in germ cell development. We demonstrate using super-resolution microscopy that numerous MAD2L2 microfoci are exclusively associated with euchromatin, similar to other factors of the DNA damage response. In the absence of MAD2L2 the amount of heterochromatin demarcated by H3K9me2 was significantly increased. Among the most strongly suppressed genes was Dppa3, an ESC- and germ-cell-specific gene regulating DNA methylation. In Mad2l2-deficient ESCs 5-methylcytosine levels were globally increased, while several imprinted genes became hypomethylated and transcriptionally activated. Our results emphasize the important function of MAD2L2 for the open chromatin configuration of ESCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app