Add like
Add dislike
Add to saved papers

Involvement of apoptotic pathways in docosahexaenoic acid-induced benefit in prostate cancer: Pathway-focused gene expression analysis using RT(2) Profile PCR Array System.

BACKGROUND: Present study aimed to better understand the potential apoptotic pathways that involved in docosahexaenoic acid (DHA)-induced apoptosis of prostate cancer cells.

METHODS: Human prostate cancer DU145 cells were treated with different concentrations of fish oil, omega-3 PUFA (DHA, and Eicosapentaenoic acid, EPA), or omega-6 PUFA (Arachidonic acid, AA). Cell viability and apoptosis were evaluated by MTT assay and Hoechst staining. Pathway-focused gene expression profiling of DU145 cells was analyzed with the RT(2) Profile PCR Array System. The results were verified by real time quantitative polymerase chain reaction (RT-qPCR).

RESULTS: AA exposure showed no obvious effect on viability of DU145 cells. However, exposure with fish oil, EPA, or DHA for 24 h significantly affected cell viability. The growth inhibition of DHA was more pronounced than that of EPA and showed a time-dependent increase. DHA exposure caused typical apoptotic characteristics. Ten genes were more expressed, while 5 genes were less expressed following DHA exposure. RT-qPCR confirmed the time dependent effect of DHA on the expression of these differentially expressed genes. KEGG pathway analysis showed that DHA may induce the apoptosis of cancer cells preferentially through mediating P53, MAPK, TNF, PI3K/AKT, and NF-κB signaling pathways.

CONCLUSION: Our study demonstrated the beneficial action of DHA on human prostate carcinoma cell line DU145. The pro-apoptotic effect of DHA on DU145 cells may involve mediation various pathways, especially P53, MAPK, TNF, PI3K/AKT, and NF-κB signaling pathways. Molecular mechanisms of DHA on apoptosis of cancer cells still need to be further clarified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app