Add like
Add dislike
Add to saved papers

The effect of symmetry on the U L 3 NEXAFS of octahedral coordinated uranium(vi).

We describe a detailed theoretical analysis of how distortions from ideal cubic or Oh symmetry to tetrahedral, D4h , symmetry affect the shape, in particular the width, of the U L3 -edge NEXAFS for U(vi) in octahedral coordination. The full-width-half-maximum (FWHM) of the L3 -edge white line decreases with increasing distortion from Oh symmetry. In particular, the FWHM of the white line narrows whether the tetragonal distortion is to compression or to extension. The origin of this decrease in the FWHM is analyzed in terms of the electronic structure of the excited levels arising from the unoccupied U(6d). The relative importance of ligand field and of spin-orbit effects is examined, where the dominant role of ligand field effects is established. Especially at higher distortions, the ligand splittings decrease rapidly and lead to an accelerated, quadratic decrease in the FWHM with increasing distortion. This is related to the increase of covalent character in the appropriate component of the Oh derived eg orbitals. Our ab initio theory uses relativistic wavefunctions for cluster models of the structures; empirical or semi-empirical parameters were not used to adjust prediction to experiment. A major advantage is that it provides a transparent approach for determining how the character and extent of the covalent mixing of the relevant U and O orbitals affect the U L3 -edge white line.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app