Add like
Add dislike
Add to saved papers

Effect of particle size, moisture content, and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification.

3 Biotech 2016 December
A large amount of cotton stalk waste biomass with high cellulose content are incinerated by the farmers causing air pollution. The high cellulose content of cotton stalks can be converted to fermentable sugars by fungal delignification pretreatment of lignocellulosic biomass and enzymatic saccharification. The effect of particle size, moisture content, and media supplements was studied for delignification of cotton stalks by Daedalea flavida MTCC 145 (DF-2) in solid-state fermentation. The highest lignolytic enzyme activities, optimal lignin degradation 29.88 ± 0.97% (w/w) with cellulose loss 11.70 ± 1.30% (w/w), were observed in cotton stalks at particle size 5 mm with 75% moisture content after 20 days. Cellulolytic enzyme activity increased with decrease in particle size and increased moisture content. The addition of Cu(2+), gallic acid, and veratryl alcohol enhanced the lignolytic enzyme production and the lignin degradation. In addition to increased laccase activity, Cu(2+) inhibited the cellulolytic activity. Supplements Cu(2+) at 0.5 mM/g gave the best results of lignin degradation 33.74 ± 1.17% (w/w) and highest selectivity value (SV) 3.15 after pretreatment. The glucose yield increased to 127.44 ± 4.56 mg/g from 20 day pretreated cotton stalks with Cu(2+) supplements, ~threefolds higher than untreated cotton stalks. The study is important for the production of fermentable sugars from cotton stalks residues which can further be utilized in production of bioethanol and other applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app