Add like
Add dislike
Add to saved papers

Evaluation of biochemical markers during somatic embryogenesis in Silybum marianum L.

3 Biotech 2016 June
In present report effects of explants type, basal media and plant growth regulators (PGRs) were tested for induction of indirect somatic embryogenesis in medicinally important plant Silybum marianum L. Leaf, petiole and root explants were exploited in vitro on B5 (Gamborg), SH (Schenk and Hildebrandt) and MS (Murashige and Skoog) media for induction of embryogenic callus followed by somatic embryogenesis. Highest callus induction frequency (76 ± 4.8 %) was recorded when petiole explants of in vitro derived plantlets were cultured on B5 medium supplemented with 1.5 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4_D) in combination with 1.5 mg l(-1) Thidiazuron (TDZ). Induction and multiplication of somatic embryos were observed, when the embryogenic calluses were sub-cultured on to B5 medium containing 0.5 mg l(-1) 2,4-D plus 1.5 mg l(-1) TDZ. At this PGRs treatment, 77 % of the cultures responded with 39.1 somatic embryos per callus. Furthermore, MS0 medium was indicated more reponsive for growth and maturation of somatic embryos. Analysis of biochemical markers during various growth phases in somatic embryogenesis revealed that somatic embryos exhibited highest level of total carbohydrate, starch, ascorbic acid and total free amino acids. However, higher protein levels were detected in non-embryogenic callus. Nevertheless, considerable amount of silymarin (4.1 mg g(-1) DW) was detected in somatic embryos than other growth phases. Thus, the present study concluded that biochemical and physiological changes during embryogenesis are influenced by interplay of explants type, basal media and PGRs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app