Add like
Add dislike
Add to saved papers

The Use of Growth Mixture Modeling for Studying Resilience to Major Life Stressors in Adulthood and Old Age: Lessons for Class Size and Identification and Model Selection.

Objectives: Growth mixture modeling (GMM) combines latent growth curve and mixture modeling approaches and is typically used to identify discrete trajectories following major life stressors (MLS). However, GMM is often applied to data that does not meet the statistical assumptions of the model (e.g., within-class normality) and researchers often do not test additional model constraints (e.g., homogeneity of variance across classes), which can lead to incorrect conclusions regarding the number and nature of the trajectories. We evaluate how these methodological assumptions influence trajectory size and identification in the study of resilience to MLS.

Method: We use data on changes in subjective well-being and depressive symptoms following spousal loss from the HILDA and HRS.

Results: Findings drastically differ when constraining the variances to be homogenous versus heterogeneous across trajectories, with overextraction being more common when constraining the variances to be homogeneous across trajectories. In instances, when the data are non-normally distributed, assuming normally distributed data increases the extraction of latent classes.

Discussion: Our findings showcase that the assumptions typically underlying GMM are not tenable, influencing trajectory size and identification and most importantly, misinforming conceptual models of resilience. The discussion focuses on how GMM can be leveraged to effectively examine trajectories of adaptation following MLS and avenues for future research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app