Add like
Add dislike
Add to saved papers

Addressing the Barriers to Bioimpedance Spectroscopy Use in Major Burns: Alternate Electrode Placement.

Bioimpedance spectroscopy (BIS) is a method used to assess body composition and fluid distribution. As a technology for measurement of fluid shifts during acute burn resuscitation, there are potential barriers to its use due to the location of wounds. This study aimed to determine whether alternate electrode positions were a suitable alternative compared to standardized (manufacturer) positions in moderate to large size burns for the measurement of BIS resistance and fluid changes. BIS measurements were collected in standard and alternate electrode placements and in an open wound and Acticoat™ dressing condition. A percentage difference greater than 5% between each standard and alternate placement BIS measurements was deemed clinically significant. Chi-square tests determined there were no significant differences (P = .097-.96) between the standard and alternate electrode placements for whole body and limb segment BIS in both dressing conditions. Only whole body BIS resistance variables and extracellular fluid volumes were interchangeable in both dressing conditions and upper limb segmental measures were interchangeable in an open wound only. The differences between measurements of other BIS variables across the conditions were not acceptable or deemed not clinically acceptable without adjustment. The results showed that for moderate to large burn injuries clinicians can use whole body and upper limb segmental BIS variables to monitor changes in fluid shifts with alternate electrode placements where wounds preclude standardized placement within specified dressing conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app