Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activation of NOD-1/JNK/IL-8 signal axis in decidual stromal cells facilitates trophoblast invasion.

Decidual stromal cells (DSCs) are known to regulate trophoblast invasion via unveiled mechanism yet. And nucleotide-binding oligomerization domain-containing protein 1 (NOD1) may influence on this DSC-trophoblast interaction. We investigated the mechanism underlying the DSC-mediated regulation of trophoblast invasion and the effect of NOD1 on their cross talk. Using human primary DSCs, BeWo cell invasion was measured. Cytokine secretion and MAP kinase signaling were examined in DSCs following treatment with NOD1 agonist, Tri-DAP. DSCs secreted IL-8 and increased trophoblast invasion. Tri-DAP further increased IL-8 secretion from DSCs via JNK pathway and facilitated both MMP-2 production and trophoblast invasion compared with control. Upon cotreatment of IL-8 and anti-IL-8 antibody to BeWo cells, the number of invading trophoblasts and MMP-2 production decreased significantly. These results suggest that IL-8 from DSCs may play a role to increase the invasiveness of trophoblast cells into the decidua via NOD1/JNK pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app