Add like
Add dislike
Add to saved papers

Simulation study of a D-shape PET scanner for improved sensitivity and reduced cost in whole-body imaging.

Much research effort is being made to increase the sensitivity and improve the imaging performance of positron emission tomography (PET) scanners. Conventionally, sensitivity can be increased by increasing the number of detector rings in the axial direction (but at high cost) or reducing the diameter of the scanner (with the disadvantages of reducing the space for patients and degrading the spatial resolution due to the parallax error). In this study, we proposed a PET scanner with a truncated ring and an array of detectors that can be arranged in a straight line below the bed. We called this system 'D-PET' as it resembles the letter 'D' when it is rotated by 90° in the counterclockwise direction. The basic design idea was to cut the unused space under the patient's bed; this area is usually not in use in clinical diagnosis. We conducted Monte Carlo simulations of the D-PET scanner and compared its performance with a cylindrical PET scanner. The scanners were constructed from 4-layer depth-of-interaction detectors which consisted of a 16  ×  16  ×  4 LYSO crystal array with dimensions of 2.85  ×  2.85  ×  5 mm3 . The results showed that the D-PET had an increase in sensitivity and peak-NECR of 30% and 18%, respectively. The D-PET had low noise in the reconstructed images throughout the field-of-view compared to the cylindrical PET. These were achieved while keeping sufficient space for the patient, and also without a severe effect on the spatial resolution. Furthermore, the number of detectors (and hence the cost) of the D-PET scanner was reduced by 12% compared to the cylindrical PET scanner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app