JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Evidence for C1q-mediated crosslinking of CD33/LAIR-1 inhibitory immunoreceptors and biological control of CD33/LAIR-1 expression.

Scientific Reports 2017 March 22
C1q collagen-like region (CLR) engaging and activating the LAIR-1 inhibitory immunoreceptor represents a non-complement mechanism for maintaining immune quiescence. Given the binding promiscuity of C1q's globular region (gC1q), we hypothesized that C1q concurrently associates with distinct inhibitory immunoreceptors to produce C1q-mediated modulatory networking. Like LAIR-1, CD33 inhibitory immunoreceptors are highly expressed on monocytes. Binding CD33 restricts cell activation/differentiation; however, natural ligands for CD33 remain elusive. CD33 has IgC2-like domains potentially recognized by gC1q. Thus, we asked whether C1q binds to CD33 and if C1q mediates CD33/LAIR-1 crosslinking. Our findings demonstrate that C1q and gC1q interact with CD33 to activate its inhibitory motifs, while CLR does not. Whole C1q is required to crosslink CD33 and LAIR-1 and concurrently activate CD33/LAIR-1 inhibitory motifs. While C1q binds CD33C2 domains, decreased C1q-CD33 interactions resulting from sialic acid masking of CD33C2 domains suggests a process for regulating C1q-CD33 activity. Consistent with defective self-tolerance, CD33/LAIR-1 expression is reduced in systemic lupus erythematosus (SLE) myelomonocytes. The anti-inflammatory cytokine M-CSF, but not DC growth factors, sustains CD33/LAIR-1 expression on both healthy and SLE cells suggesting further biological control of C1q-CD33/LAIR-1 processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app