Add like
Add dislike
Add to saved papers

Phosphorylation of the exocyst protein Exo84 by TBK1 promotes insulin-stimulated GLUT4 trafficking.

Science Signaling 2017 March 22
Insulin stimulates glucose uptake through the translocation of the glucose transporter GLUT4 to the plasma membrane. The exocyst complex tethers GLUT4-containing vesicles to the plasma membrane, a process that requires the binding of the G protein (heterotrimeric guanine nucleotide-binding protein) RalA to the exocyst complex. We report that upon activation of RalA, the protein kinase TBK1 phosphorylated the exocyst subunit Exo84. Knockdown of TBK1 blocked insulin-stimulated glucose uptake and GLUT4 translocation; knockout of TBK1 in adipocytes blocked insulin-stimulated glucose uptake; and ectopic overexpression of a kinase-inactive mutant of TBK1 reduced insulin-stimulated glucose uptake in 3T3-L1 adipocytes. The phosphorylation of Exo84 by TBK1 reduced its affinity for RalA and enabled its release from the exocyst. Overexpression of a kinase-inactive mutant of TBK1 blocked the dissociation of the TBK1/RalA/exocyst complex, and treatment of 3T3-L1 adipocytes with specific inhibitors of TBK1 reduced the rate of complex dissociation. Introduction of phosphorylation-mimicking or nonphosphorylatable mutant forms of Exo84 blocked insulin-stimulated GLUT4 translocation. Thus, these data indicate that TBK1 controls GLUT4 vesicle engagement and disengagement from the exocyst, suggesting that exocyst components not only constitute a tethering complex for the GLUT4 vesicle but also act as "gatekeepers" controlling vesicle fusion at the plasma membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app