Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely through a Common Mechanism.

The TWIK-related acid-sensitive potassium channel 3 (TASK-3; KCNK9) tandem pore potassium channel function is activated by halogenated anesthetics through binding at a putative anesthetic-binding cavity. To understand the pharmacologic requirements for TASK-3 activation, we studied the concentration-response of TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, halothane, α -chloralose, 2,2,2-trichloroethanol [TCE], and chloral hydrate), to ethanol, and to a panel of halogenated methanes and alcohols. We used mutagenesis to probe the anesthetic-binding cavity as observed in a TASK-3 homology model. TASK-3 activation was quantified by Ussing chamber voltage clamp analysis. We mutagenized the residue Val-136, which lines the anesthetic-binding cavity, its flanking residues (132 to 140), and Leu-122, a pore-gating residue. The 2-halogenated ethanols activate wild-type TASK-3 with the following rank order efficacy (normalized current [95% confidence interval]): 2,2,2-tribromo-(267% [240-294]) > 2,2,2-trichloro-(215% [196-234]) > chloral hydrate (165% [161-176]) > 2,2-dichloro- > 2-chloro ≈ 2,2,2-trifluoroethanol > ethanol. Similarly, carbon tetrabromide (296% [245-346]), carbon tetrachloride (180% [163-196]), and 1,1,1,3,3,3-hexafluoropropanol (200% [194-206]) activate TASK-3, whereas the larger carbon tetraiodide and α -chloralose inhibit. Clinical agents activate TASK-3 with the following rank order efficacy: halothane (207% [202-212]) > isoflurane (169% [161-176]) > sevoflurane (164% [150-177]) > desflurane (119% [109-129]). Mutations at and near residue-136 modify TCE activation of TASK-3, and interestingly M159W, V136E, and L122D were resistant to both isoflurane and TCE activation. TASK-3 function is activated by a multiple agents and requires a halogenated substituent between ∼30 and 232 cm3 /mol volume with potency increased by halogen polarizeability. Val-136 and adjacent residues may mediate anesthetic binding and stabilize an open state regulated by pore residue Leu-122. Isoflurane and TCE likely share commonalities in their mechanism of TASK-3 activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app