JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of genetic deletion of soluble 5'-nucleotidases NT5C1A and NT5C2 on AMPK activation and nucleotide levels in contracting mouse skeletal muscles.

AMP-activated protein kinase (AMPK) plays a key role in energy homeostasis and is activated in response to contraction-induced ATP depletion in skeletal muscle via a rise in intracellular AMP/ADP concentrations. AMP can be deaminated by AMP-deaminase (AMPD) to IMP, which is hydrolyzed to inosine by cytosolic 5'-nucleotidase II (NT5C2). AMP can also be hydrolyzed to adenosine by cytosolic 5'-nucleotidase 1A (NT5C1A). Previous gene silencing and overexpression studies indicated control of AMPK activation by NT5C enzymes. In the present study using gene knockout mouse models, we investigated the effects of NT5C1A and NT5C2 deletion on intracellular adenine nucleotide levels and AMPK activation in electrically stimulated skeletal muscles. Surprisingly, NT5C enzyme knockout did not lead to enhanced AMP or ADP concentrations in response to contraction, with no potentiation of increases in AMPK activity in extensor digitorum longus (EDL) and soleus mouse muscles. Moreover, dual blockade of AMP metabolism in EDL using an AMPD inhibitor combined with NT5C1A deletion did not enhance rises in AMP and ADP or increased AMPK activation by electrical stimulation. The results on muscles from the NT5C knockout mice contradict previous findings where AMP levels and AMPK activity were shown to be modulated by NT5C enzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app