Add like
Add dislike
Add to saved papers

Engineering of PEDF-Expressing Primary Pigment Epithelial Cells by the SB Transposon System Delivered by pFAR4 Plasmids.

Neovascular age-related macular degeneration (nvAMD) is characterized by choroidal blood vessels growing into the subretinal space, leading to retinal pigment epithelial (RPE) cell degeneration and vision loss. Vessel growth results from an imbalance of pro-angiogenic (e.g., vascular endothelial growth factor [VEGF]) and anti-angiogenic factors (e.g., pigment epithelium-derived factor [PEDF]). Current treatment using intravitreal injections of anti-VEGF antibodies improves vision in about 30% of patients but may be accompanied by side effects and non-compliance. To avoid the difficulties posed by frequent intravitreal injections, we have proposed the transplantation of pigment epithelial cells modified to overexpress human PEDF. Stable transgene integration and expression is ensured by the hyperactive Sleeping Beauty transposon system delivered by pFAR4 miniplasmids, which have a backbone free of antibiotic resistance markers. We demonstrated efficient expression of the PEDF gene and an optimized PEDF cDNA sequence in as few as 5 × 103 primary cells. At 3 weeks post-transfection, PEDF secretion was significantly elevated and long-term follow-up indicated a more stable secretion by cells transfected with the optimized PEDF transgene. Analysis of transgene insertion sites in human RPE cells showed an almost random genomic distribution. The results represent an important contribution toward a clinical trial aiming at a non-viral gene therapy of nvAMD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app