Add like
Add dislike
Add to saved papers

Data-driven estimation of blood pressure using photoplethysmographic signals.

Noninvasive measurement of blood pressure by optical methods receives considerable interest, but the complexity of the measurement and the difficulty of adjusting parameters restrict applications. We develop a method for estimating the systolic and diastolic blood pressure using a single-point optical recording of a photoplethysmographic (PPG) signal. The estimation is data-driven, we use automated machine learning algorithms instead of mathematical models. Combining supervised learning with a discrete wavelet transform, the method is insensitive to minor irregularities in the PPG waveform, hence both pulse oximeters and smartphone cameras can record the signal. We evaluate the accuracy of the estimation on 78 samples from 65 subjects (40 male, 25 female, age 29±7) with no history of cardiovascular disease. The estimate for systolic blood pressure has a mean error 4.9±4.9 mm Hg, and 4.3±3.7 mm Hg for diastolic blood pressure when using the oximeter-obtained PPG. The same values are 5.1±4.3 mm Hg and 4.6±4.3 mm Hg when using the phone-obtained PPG, comparing with A&D UA-767PBT result as gold standard. The simplicity of the method encourages ambulatory measurement, and given the ease of sharing the measured data, we expect a shift to data-oriented approaches deriving insight from ubiquitous mobile devices that will yield more accurate machine learning models in monitoring blood pressure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app