Add like
Add dislike
Add to saved papers

Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor.

Extracellular vesicles (EVs) are abundant in various biological fluids including blood, saliva, urine, as well as extracellular milieu. Accumulating evidence has indicated that EVs, which contain functional proteins and small RNAs, facilitate intercellular communication between neighbouring cells, and are critical to maintain various physiological processes. In contrast, EV-derived toxic signals can spread out over the tissues adjacent to the injured area in certain diseases, including brain tumors and neurodegenerative disorders. This demands better characterization of EVs which can be employed for liquid biopsy clinically as well as for the study of intercellular signalling. Exosomes and microvesicles share a number of similar characteristics, but it is important to distinguish between these two types of EVs. Here, we report for the first time that our in-house developed Localized Surface Plasmon Resonance biosensor with self-assembly gold nanoislands (SAM-AuNIs) can be used to detect and distinguish exosomes from MVs isolated from A-549 cells, SH-SY5Y cells, blood serum, and urine from a lung cancer mouse model. Exosomes, compared with MVs, produced a distinguishable response to the bare LSPR biosensor without functionalization, suggesting a different biophysical interaction between exosomes and MVs with SAM AuNIs. This sensor attains the limit of detection to 0.194µg/ml, and the linear dynamic range covers 0.194-100µg/ml. This discovery not only reveals great insight into the distinctive membrane property of tumor-derived exosomes and MVs, but also facilitate the development of novel LSPR biosensors for direct detection and isolation of heterogeneous EVs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app