JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Glucose Homeostasis: Regulation by Peripheral Circadian Clocks in Rodents and Humans.

Endocrinology 2017 May 2
Most organisms, including humans, have developed an intrinsic system of circadian oscillators, allowing the anticipation of events related to the rotation of Earth around its own axis. The mammalian circadian timing system orchestrates nearly all aspects of physiology and behavior. Together with systemic signals, emanating from the central clock that resides in the hypothalamus, peripheral oscillators orchestrate tissue-specific fluctuations in gene expression, protein synthesis, and posttranslational modifications, driving overt rhythms in physiology and behavior. There is increasing evidence on the essential roles of the peripheral oscillators, operative in metabolically active organs in the regulation of body glucose homeostasis. Here, we review some recent findings on the molecular and cellular makeup of the circadian timing system and its implications in the temporal coordination of metabolism in health and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app