Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhanced intestinal absorption of curcumin in Caco-2 cell monolayer using mucoadhesive nanostructured lipid carriers.

This study aimed to compare the intestinal permeation of curcumin-loaded polymer coated nanostructured lipid carriers (NLCs) and uncoated NLCs using the Caco-2 cell model. The uncoated NLCs were prepared using a warm microemulsion technique, while polymer-coated NLCs were prepared with the same method but were followed by coating particle surface with polyethylene glycol (PEG) 400 or polyvinyl alcohol (PVA). After lyophilization, all formulations possessed a mean size of <400 nm with a zeta potential of ∼-30 mV and a high entrapment efficacy up to 90%. All NLCs formulation showed significantly improvement in curcumin water solubility, more than 60-folds as compared to curcumin dispersion. In addition, they could protect curcumin from degradation in basic pH, 90% curcumin remaining after 6 h incubation in culture medium. In vitro permeation studies revealed that PEG-NLCs and PVA-NLCs provided significantly higher apparent permeation coefficient (Papp ) value than uncoated NLCs. Moreover, after 6 months storage at 4 °C in the absence of sunlight, the physical, and chemical stabilities of the lyophilized curcumin-loaded polymer coated NLCs and uncoated NLCs could be maintained, i.e., the mean particle size and the amount of curcumin showed no significant changes (p > 0.05) compared to those freshly prepared formulations. Considered overall, polymer coated NLCs are an important strategy to improve the oral bioavailability of curcumin. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 734-741, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app