JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

The emerging role of homologous recombination repair and PARP inhibitors in genitourinary malignancies.

Cancer 2017 June 2
As cells age and are exposed to genotoxic stress, preservation of the genomic code requires multiple DNA repair pathways to remove single-strand or double-strand breaks. Loss of function somatic genomic aberrations or germline deficiency in genes involved in DNA repair can result in acute cell death or, after a latency period, cellular transformation. Therapeutic exploitation of DNA repair by inhibition of poly (adenosine diphosphate [ADP]) ribose polymerases (PARP), a family of enzymes involved in the repair of single-strand and in some cases double-strand breaks, has become a novel cancer treatment. Although the application of PARP inhibitors (PARPis) initially focused on tumors with BRCA1 or BRCA2 deficiencies, synthetic susceptibilities to PARPis have been expanded due to the identification of tumors with mutations pathways involved in DNA damage repair, in particular those that repair double-strand breaks using homologous recombination (HR). There is an increasing appreciation that genitourinary (GU) malignancies, including bladder cancer and especially prostate cancer, contain subsets of patients with germline and somatic alterations in HR genes that may reflect an increased response to PARPis. In this review, the authors describe the mechanisms and rationale of the use of PARPis in patients with GU cancers, summarize previously reported preclinical and clinical trials, and identify ongoing trials to determine how PARPis and strategies targeted at HR repair can have widespread application in patients with GU cancers. Cancer 2017;123:1912-1924. © 2017 American Cancer Society.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app