JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fecal microbiota transplantation (FMT) could reverse the severity of experimental necrotizing enterocolitis (NEC) via oxidative stress modulation.

Fecal microbiota transplantation (FMT) has been used successfully to treat a variety of gastroenterological diseases. The alterations of microbiota in mouse models of necrotizing enterocolitis (NEC) as well as in patients suggested the possibility of treating NEC with FMT. Here we show that FMT caused an improvement in the histopathology and symptoms of NEC in WT mice, but not Grx1-/- mice. FMT eliminated O2 • - production and promoted NO production in experimental NEC mice though the modulation of S-glutathionylation of eNOS (eNOS-SSG). FMT decreased the extent of TLR4-mediated proinflammatory signaling though TLR9 in the intestinal mucosa tissue. FMT also suppressed intestinal apoptosis and bacterial translocation across the intestinal barrier, which was accompanied by decreased inflammatory cytokine levels, altered bacterial microbiota, and regulated lymphocyte proportions. FMT is effective in a mouse model of NEC through the modulation of oxidative stress and reduced colon inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app