JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Internalization, axonal transport and release of fibrillar forms of alpha-synuclein.

Intra-neuronal protein aggregates made of fibrillar alpha-synuclein (α-syn) are the hallmark of Parkinson's disease (PD). With time, these aggregates spread through the brain following axonal projections. Understanding the mechanism of this spread is central to the study of the progressive nature of PD. Here we review data relevant to the uptake, transport and release of α-syn fibrils. We summarize several cell surface receptors that regulate the uptake of α-syn fibrils by neurons. The aggregates are then transported along axons, both in the anterograde and retrograde direction. The kinetics of transport suggests that they are part of the slow component b of axonal transport. Recent findings indicate that aggregated α-syn is secreted by neurons by non-canonical pathways that may implicate various molecular chaperones including USP19 and the DnaJ/Hsc70 complex. Additionally, α-syn fibrils may also be released and transmitted from neuron-to-neuron via exosomes and tunneling nanotubes. Understanding these different mechanisms and molecular players underlying α-syn spread is crucial for the development of therapies that could halt the progression of α-syn-related degenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app